BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition.
نویسندگان
چکیده
PURPOSE Recurrent "driver" mutations at specific loci in BRAF, NRAS, KIT, GNAQ, and GNA11 define clinically relevant molecular subsets of melanoma, but more than 30% are "pan-negative" for these recurrent mutations. We sought to identify additional potential drivers in "pan-negative" melanoma. EXPERIMENTAL DESIGN Using a targeted next-generation sequencing (NGS) assay (FoundationOne™) and targeted RNA sequencing, we identified a novel PAPSS1-BRAF fusion in a "pan-negative" melanoma. We then analyzed NGS data from 51 additional melanomas genotyped by FoundationOne™, as well as melanoma RNA, whole-genome and whole-exome sequencing data in The Cancer Genome Atlas (TCGA), to determine the potential frequency of BRAF fusions in melanoma. We characterized the signaling properties of confirmed molecular alterations by ectopic expression of engineered cDNAs in 293H cells. RESULTS Activation of the mitogen-activated protein kinase (MAPK) pathway in cells by ectopic expression of PAPSS1-BRAF was abrogated by mitogen-activated protein kinase kinase (MEK) inhibition but not by BRAF inhibition. NGS data analysis of 51 additional melanomas revealed a second BRAF fusion (TRIM24-BRAF) in a "pan-negative" sample; MAPK signaling induced by TRIM24-BRAF was also MEK inhibitor sensitive. Through mining TCGA skin cutaneous melanoma dataset, we further identified two potential BRAF fusions in another 49 "pan-negative" cases. CONCLUSIONS BRAF fusions define a new molecular subset of melanoma, potentially comprising 4% to 8% of "pan-negative" cases. Their presence may explain an unexpected clinical response to MEK inhibitor therapy or assist in selecting patients for MEK-directed therapy.
منابع مشابه
A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors.
UNLABELLED Most melanomas harbor oncogenic BRAF(V600) mutations, which constitutively activate the MAPK pathway. Although MAPK pathway inhibitors show clinical benefit in BRAF(V600)-mutant melanoma, it remains incompletely understood why 10% to 20% of patients fail to respond. Here, we show that RAF inhibitor-sensitive and inhibitor-resistant BRAF(V600)-mutant melanomas display distinct transcr...
متن کاملMek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts
One of the key oncogenic pathways involved in melanoma aggressiveness, development and progression is the RAS/BRAF/MEK pathway, whose alterations are found in most patients. These molecular anomalies are promising targets for more effective anti-cancer therapies. Some Mek inhibitors showed promising antitumor activity, although schedules and doses associated with low systemic toxicity need to b...
متن کاملEffects of BRAF mutations and BRAF inhibition on immune responses to melanoma.
Malignant melanoma is associated with poor clinical prognosis; however, novel molecular and immune therapies are now improving patient outcomes. Almost 50% of melanomas harbor targetable activating mutations of BRAF that promote RAS-RAF-MEK-ERK pathway activation and melanoma proliferation. Recent evidence also indicates that melanomas bearing mutant BRAF may also have altered immune responses,...
متن کاملRole of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression.
Heterogeneous expression of melanocytic antigens occurs frequently in melanomas and represents a potent barrier to immunotherapy. We previously showed that coordinated losses of several melanocytic antigens are generally attributable to down-regulation of antigen gene expression rather than irreversible mutation. Treatment of melanoma cells with mitogen-activated protein kinase (MAPK)/extracell...
متن کاملGenetic predictors of MEK dependence in non-small cell lung cancer.
Hyperactivated extracellular signal-regulated kinase (ERK) signaling is common in human cancer and is often the result of activating mutations in BRAF, RAS, and upstream receptor tyrosine kinases. To characterize the mitogen-activated protein kinase/ERK kinase (MEK)/ERK dependence of lung cancers harboring BRAF kinase domain mutations, we screened a large panel of human lung cancer cell lines (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 19 24 شماره
صفحات -
تاریخ انتشار 2013